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INTRODUCTION AND SUMMARY 

This report is concerned with two nonlinear propagation effects 

which limit the transmission of intense laser radiation through the 

atmosphere. One effect is that of self-defocusing due to heating, 

which can cause an undesirable de rease in the delivered power density. 

The defocusing results from photon absorption leading to atmospheric 

heating and consequently to a local decrease in the refractive index; 

the result is a lens effect vrtiich causes the beam to diverge. This 

instability is apparently significant even for exceedingly low ab- 

sorption coefficients. Consequently it is necessary to have reliable 

information in the far wings of atmospheric absorption lines where 

laboratory data is meager, and where conventional pressure broadening 

theories are inapplicable. This repojrt, then, presents theoretical 

studies on certain aspects of very-far-wing collision broadening, 

which are particularly pertinent to the problem of thermal defocusing 

in the atmosphere. 

The second phenomenon studied is the stimulated Raman effect. 

This work represents a continuation of previous research which was 

concerned with catastrophic beam depletion resulting from stimulated 

Raman scattering in the atmosphere. The new work deals with appli- 

cations of the previously derived general results to an analysis of 

the generation and amplification of short intense pulses of Raman 

backscattered light. 

Chapter 1 describes some pi.eliminary theoretical studies on the 

far-wing collision broadening of the rotational spectrum of a polar 

molecule. The studies were motivated by the currently prevalent belief 

that a substantial part of the continuous background-absorption by the 

1. High Intensity Laser Propagation in the Atmosphere, TRW Systems 
Group, Final Report 05691-6003-R000, February 1967. 
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atmosphere in the wavelength-vicinity of lOy is due to the very-far-wing 

collision broadening of the rotational spectrum of H„0. 

The basic approach of the herein described studies may be regarded 

as an extension of the classical Debye theory of dielectric relaxation. 

In this theory, the origin of dielectric absorptivity arises from the 

random interruption of the rotaiional motion of the individual molecular 

dipoles by impact-type collisions, i.e., collisions of infinitesimal 

duration — with other atoms or molecules of the medium.  In the present 

work, the theory has been extended to take account of 

(a) the fact that (in contrast to Debye's original as- 

sumption) the frequency of the incident light wave 

is large compared to rotational frequencies, 

(b) quantum corrections arising from the fact that 'RCü > kT, 

and, 

(c) the actual finiteness of time duration of collisions. 

While this work was nearing completion, the authors became aware 

of very recent data of D. Burch on laboratory studies of HJD - N- 

mixtures in the lOy region.  These studies indicated (cf« Summary of 

May 16, 1967 meeting on Infrared Atmospheric Absorption, page 2) that, 

despite the fact that the relative concentration of H.O in the studied 

mixtures was < 2%, the collisions responsible for absorption were those 

of H?0 molecules with each other!  Such a result was found to be un- 

explainable within the framework of the above-described theoretical 

studies; moreover, the magnitude of the experimental absorption was 

found to be several orders larger than the theoretical predictionc 

The first attempt to remove the discrepancy consisted in taking 

account of the shortening of the time-duration of collisions via the 

mechanism of attractive forces (associated with dipole-dipole inter- 

actions); as shown by the detailed expressions, such shortening would 

lead to an enhancement of the far-wing absorption» However, with 

—»——-  ■■ ■'—- 



physically reasonable values of the relevant molecular parameters, only 

marginal improvement was obtained; the calculated absorption still fell 

short of the experimental value by almost three orders of magnitude 

Under these circumstances, it was felt necessary to introduce 

some essentially new physical ingredient into the theoryo  One such 

possibility has suggested itself and is presently being pursued.  Briefly, 

it is now felt that the origin of the far-wing absorption in H20 vapor 

arises from the angular dependence of the (strong) dipole-dlpole 

interaction. Namely, at sufficiently close — yet still accessible — 

distances of approach of two colliding H-O molecules, this angular 

dependence provides a potential trough for the rotational motion of 

each molecule; within this trough, the molecules execute a type of 

hindered rotation — or. as it is commonly designated, a "librational" 

motion.  The decisive point is that, according to preliminary estimates, 

the frequencies associated with this librational motion are substantial- 

ly higher than those of free rotation — and, in fact, may be expected to 

encompass the 1000 cm"  (10p) region.  Under these circumstances, it 

turns out that, according to the general theory of collision broadening, 

the occurrence-probability of these frequencies — in particular, those 

in the immediate vicinity of the external frequency — becomes the 

principal factor in determining the absorption.  ?reliminary calculations 

indicate that the resultant absorption far outweighs that obtained in 

our previous theoretical calculations. 

In conclusion, then, while it is too early to be certain, the 

hindered-rotation mechanism looks presently rather promising. 

Chapter 2 contains a discussion of pulse amplification by means 

of the stimulated Raman effect and of a second related topic, namely, 

the generation of intense, ultra-short Raman backscattered pulses 

recently observed in the laboratory.  The first subject in Chapter 2 

is the Raman amplifier which consists of a length of Raman active 

material through which both a beam of laser light and a beam of light 

at the first Stokes frequency of the laser light in the material are passing. 
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The beams are traveling in opposite directions and hence the second beam 

(the Stokes shifted beam) will be amplified by the stimulated emission 

of backscattered light from the first.  For an input Stokes wave of 

arbitrary time dependence, the time dependence of the output has been 

formulated in terms of the solution of a differential difference equation. 

The solution of this equation has been reduced to quadratures for an 

arbitrary input, and has been obtained in closed form for the special 

case of a step function input. 

The Raman pulse generator is a device which was first investigated 

by Maier, et al.2 In their experiment a carbon disulfide cell was il- 

luminated by a beam of intense laser light. Observations at the entrance 

of the cell revealed intense, short pulses of backscattered Stokes 

radiation. They have suggested that "A probable mechanism for the 

initiation of the pulse is the abrupt onset of backward stimulated 

Stokes emission near the exit cell surface, accompanying the occurrence 

of laser self-focusing in that region." As a support for their sug- 

gestion we have constructed a specific model of the influence of self- 

focusing on the amplification of spontaneously emitted Raman waves. 

This model predicts the height and shape of the emitted pulse in terms 

of the solution of a nonlinear differential difference equation. The 

equation is currently being solved by computer; it is anticipated that 

the analysis will be completed by the end of the present contract period. 

2. M. Maier, W. Kaiser and J.A. Giordmaine, Phys. Rev, Letters, 17, 

1275 (1966). 

C 
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INTRODUCTION 

This report describes some preliminary model-type theoretical 

studies on the far-wing broadening of the pure rotational spectrum of 

a polar molecule. The studies were motivated by awareness of the preva- 

lent belief1 that a substantial part of the continuous background- 

absorption in the atmosphere in the wavelength vicinity of lOy is due 

to the very-far-wing broadening of pure rotation bands of H20 with 

maximal intensity at wavelengths ,50,. As will be described more fully 

below, the basic approach is an extension of that employed in the cor- 

responding problem of the far-wing broadening of near infrared vibrational 

lines reported previously. 

While this work was in progress, the authors became aware of some 

very recent data of D. Burch (Philco)3 on laboratory studies of l^O 

absorption in the lOy region, which indicated that the basic broadening 

agency is self-broadening, i.e., ^0 - H^ collisions.  Such a result 

does not find any natural explanation within the framework of the above- 

described theoretical studies; moreover, preliminary comparisons indicate 

that the absorption observed by Burch is almost three orders of magnitude 

larger than could be accounted for by these studies. A drastic modifi- 

cation of the theoretical approach is thus required.  Such a modification 

has in fact suggested itself to us. but its development is presently in 

its very initial stage. 

Dndsr these clrcumstencee, »e feel It appropriate to devote the 

«in hody of this report to a description of the studies »hlch have heea 

carried out, and of their comparison with Batch's data, which reveal 

their inadequacy." The report then concludes with a hrief description 

of the new approach. 

o 
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1.   DISCUSSION OF THE MODEL 

The specific model on which the calculations of this report are 

based may be regarded as an adaptation of the classical Debye theory of 

dielectric relaxation.  In this theory, the collision-interrupted rota- 

tory motion of a permanent (rigid) dipole is represented as a random 

walk in the dipole-orientation angle space.  Collisions are considered 

to be instantaneous events (occurring at randomly distributed times) 

which, while preserving the dipole orientation, produce maximal random- 

ization of the angular velocity. 

Detailed calculations within the framework of this model have, for 

the most part, been limited to the domain of external frequencies small 

compared to the natural rotational frequencies, and are hence not rele- 

vant to the present problem. The extension to higher frequencies (of 

the order or larger than the rotational frequencies) was carried out by 
6 

E.P. Gross, using an approach based on a Boltzmann equation in orienta- 

tion-angle space, together with a number of different stochastic models 

for the elementary collision process, one of these being the above 

described Debye model.  Instead of following this paper, the present 

authors have found it desirable to carry out an equivalent derivation, 

based on a correlation-function method.  This derivation is presented 

in Appendix I. Its crucial result is contained in equations (1.24) and 

(1.25), which show that for external frequencies sufficiently large 
Q 

compared to thermal rotational frequencies the absorption probability 

per collision (as measured, e.g., by the imaginary part of polar- 

izability is essentially identical to that associated with the collision- 

interrupted, but otherwise free motion of a fictitious charged particle 

whose charge, e, and mass, M, are related to the actual dipole moment, y, 

and inertial moment. I- cf the rotator by the formula 

2     2 
£- = -U- (1 1) 
MI' U-U 
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The above described correspondence is in fact not really surprising. 

As is by now well established by a variety of treatments on pressure 

broadening, the absorption intensity at a given frequency, u, is deter- 

mined by the time-variations in the electric currents on a time scale 

'v.— (or less).  It then follows immediately that, under the condition 

u » u   (postulated above), the relevant time scale is so small that, 
rot r 

within it, the dipole, so to speak, "doesn't know that it's rotating." 

More prosaically, the dipolar current (in the absence of collisions) is 

essentially constant on a time scale vL/u; the significant and meaningful 

current variation arises solely from collisions. 

The above discussion brings us naturally to the consideration of 

the time-scale of the collisions themselves.  In the impact-formulation 

of the original Debye theory (as well as in Gross' work and in the 

appendix of the present paper), this time scale is zero; that is, a 

collision event causes an instantaneous alteration in the dipolar cur- 

rent.  Such an assumption is appropriate only when the actual time of 

collision, - i.e., the time required for the angular velocity of the 

dipole to change — is small compared to l/u. A rough estimate of this 

time of collision, T , is 

\lmr 

x % —-— 
C    V 

(1.2) 

where Ar is an appropriately defined range of the iuvolved forces, and 

v is an appropriate velocity of traversal of the force field.  In the 

at ence of attractive forces, and for perturbers whose velocities 

(translational or rotational) are small compared to the rotational 

velocity of the dipole absorber,  a reasonable eptimate of v is 

v -v- (2kT/Mred) 
1/2 (1.3) 

where M , is the reduced mass for rotational motion; for e.g., H.O 
red 

itself, M 

Hi 
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In the presence of attractive forces, (1.3) must;, of course, be 

augmented. This modification will be discussed later.  For the time 

being, let us assume that the interactions between the different atomic 

constituents of the dipole  and those of the perturbing molecule are 

primarily repulsive; as in Ref. (2) they will be represented by an ex- 

pression of the form 

V(r) V e o 
-or (1.4) 

where r is the interatomic distance between the H atom and the closest 

perturbing atom.  Let us then carry out a numerical estimate 

of the validity of the basic assumption of impact theory, namely 

1 > (i)T %  0) — ^  — 
c    v  av (1.5) 

for foreign-gas broadening of HO ;;t lOy.  Using the numbers. 

2TC(1000 cm"x) ä 2 x 1014 sec"1 »-1)  

^-14 ^  2 x 4 x 10 . c    , v ~ -.  « 1.5 x 10 cm/sec 
2 x 1.6 x 10 

a    ac    4 x 10 cm 

12 (the last being a magnitude typical  of exponentially repulsive forces) 

one obtains 

(i)/av m   3 

indicating a gross violation of the impact condition. 

It is therefore proposed to carry out a calculation, somewhat 

analogous to that of Chapter I of Ref. 2, in which one computes the 



probability that a charged particle Incident on (and reflected from) a 

potential barrier of the form 

V(x) = V 
o 

-ax 
(1.6) 

< 

in the presence of an electromagnetic field of frequency, w absorbs 

(o- emits) a quantum of energy fiu). As implied by the form of (1.6) the 

treatment will be one-dimensional, with x representing the direction of 

the line of centers of the colliding atoms (e.g., in HO - N collisions 

these atoms would be a hydrogen and a nitrogen atom). Of course, just 

as in Chapter I of Ref. 2, such a treatment has to be augmented by an 

appropriafe-recipe for computing effective collision diameters (which in 

a one-dimensional model are actually Infinite). This (rather subsidiary) 
13 

problem will be deferred for the time being. 

c 
10 
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2.   THE MODEL CALCULATION 

In line with the discussion of the preceding section, let us 

consider the following problem: to solve the time-dependent Schrodinger 

equation 

Hi|| - HU; (2.1) 

with a Hamiltonian of the form 

H    =    H    -i- -T-p-A (2.2) 
o      Mc — — 

H     =   -?^   v   + vW   • <2-3) O zM 

In these expressions 

A - f- 6. e'1^ +  c.c. (2.4) 
—    io) ^o 

is the vector potential associated with the external electromagnetic 

field (it is assumed to be "turned on" infinitely slowly, s being an 

infinitesimally positive number ultimately going to zero), p = T grad » 

and H , the field-free Hamiltonian, is given as a sum of the kinetic 
o 

energy of the fictitious particle (charge, e, and mass, M, being 

determined according to the recipe prescribed by the Appendix Eq. 1.27) 

and the potential energy V(x) (assumed to be one-dimensional in ac- 

cordance with the discussion of Section 1).  In the absence of the 

external electromagnetic field, (2.1) has solutions of the form 

-IE t/fi 
^(r.t) = (^(r) e       , (2.5) 

where $. (r)  satisfies the equation 

H^ = E^  . (2.6) 

11 
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In view of the one-dimensional form of the potential, <|).(.r) is chosen to 

have the form 

i 

i[k y+k z] 
«Mr)    =    I'.Cx) e     y (2.7) 

where ^,(x) obviously satisfies the one-dimensional equation 

H0XVX)     "     [-1s£2+VH    ^(x)   =  Eix ^(x) (2.8) 

with 

i:, = E, + ^- (k2 + k2)  ; 
i     ix  2M \ y   zl (2.9) 

o 

it has the usual asymptotic form 

^(x) ■*■  sin[kix x + 6^^]. (2.10) 

Deferring for a moment the complete specification of the boundary 

conditions supplementary to (2.1), let us seek perturbed solutions of 

the form 

i|)(r,t) = (|>i(r) e 
-iE t/fi 

+ ^ 
(2.11) 

where ty    is proportional to the external field (and hence arbitrarily 

small). To obtain steady-state solutions (appropriate to the physical 

situation of our problem) it is desirable to write i|) as 

♦j - e + * J * "^i^* f (+) e-ia)t ^ ,(--) _+ia)tl _st 

where $        satisfies the equation 

(2.12) 

c 
(+) (E.-rtiü)) <(>x ' - H 4) S*   =  ^- 6 . •1"- ^     "o-       iMo. ^o' Pfi^ 

(2.13) 

12 



Now write $        as 

(+)     e ^o* £ ♦i^ _e 
■Rü) + 4» sc (2.14) 

Substituting (2.14) into (2.13), one finds that 4.  satisfies the equation 

(Ei+1iü))*sc - Ho*Sc ■ i^*ff • [HoP - PHo]*i^ (2.15) 

e <£o 
i^r^-[vp-pv^i^ 

Wox 3V(x) . ,  . 

ü) M 
(2.16) 

(the elimination of all but the x-component of the external field arising 

from the x-dependence of the potential15). 

It is now necessary to discuss boundary conditions. As will be 

discussed later these are set forth most expediently for 4,  [i.e., as 

supplements to Eq. (2.16)] rather than in connection with the starting 

Eq. (2.1).  The conditions in question turn out to be jus;, that (|) 

represent an outgoing wave, namely 
sc 

*sc        *" e sc (2.17) 

where kfx, the "final" x-component of wave-vector, is determined by the 

equation 

2 2 •h kf 
fx 
IT = Efx = Ei+^-^(k2+k2) . (2.18) 

Here, it will be noticed that the plane-wave y, z dependence, 

characteristic of «^(r), has been incorporated explicitly into the 

13 



boundary conditions.  In fact, at this point it is highly desirable to 

factor this dependence out of the problem. One achieves this simply by 

Inserting 

* so 

i[k V + k z] 
e  y      * (x) 

sc 
(2.19) 

into (2.16). One obtains 

fx sc        o      sc 

,(x) 

"ox 3V   ,   /  x 

</M 3X  i 
(2.20) 

[H^  ; and iK (x) being defined by Eqs.   (2.8) and   (2.7)] whereas the 
o i 

boundary condition,   (2.17) reduces to 

o 

ik, x 
%c    " A8C e (2.21) 

With the y,z dependence now completely removed, the x-subscripts 

on the various constants will henceforth simply be dropped; thus 

E, , E. -»■ E,,E, 
fx  ix   f i 

kfx' kix ^ kf»ki 

(2.22a) 

(2.22b) 

(it being tacitly understood that all the constants now refer to motion 

in the x-direction alone). 

Before going on to solve for i|/ (x), some brief remarks on the 
sc *^\ 

physical significance of the decomposition of <f   as given by the r.h.s. 

of (2.14), are in order. As in analogous treatment in Ref. 2 (Chapter 1, 

bottom of page 11), the first term represents the amplitude for virtual 

absorption of a quantum; in particular one notes, upon inserting the 

asymptotic form of ^(x) [given by (2.7)] into (2.14), that the asyimptotic 

behavior of the term in question pertains to a particle having a kinetic 

14 



energy E = ?  , characteristic of the unperturbed wave.  Indeed, it 

would even exist in the absence of any scattering potential; in fact, 

for a free particle its coherent superposition with the unperturbed 

state gives just the classical oscillatory velocity amplitude, e C /iMw. 

By way of contrast, ty       [as seen explicitly from (2.21)] describes 
sc 

an outgoing particle of energy Ef = E.+ 'fiü). This fact by itself is suf- 

ficient to establish it as the amplitude for the real process of quantum 

absorption, under consideration here; it will therefore alone be con- 

sidered in what follows. 

From these remarks it follows that the probability P> . of an 

incident particle being reflected with simultaneous absorption of a 

quantum of electromagnetic energy ■'.s proportional to 

fact given by the formula 
sc it is in 

(+) 

4k, 

{ sc (2.23) 

For the calculation of A  one proceeds as follows. One multiplies 

both sides of (2.20) by that solution, i|>-(x), of the homogeneous equation 

Ho*£ Vf (2.24) 

which has the asymptotic form 

^f(x) 3Li^  8in(kfx + Öf) (2.25) 

0 

and integrates from minus infinity "a to some large value of x such that 

(2.21) and (2.25) are valid. One then obtains the successive equalities 

15 



€ 
e 2, ox 
ü)
2
M 

■^^■^(x'H^x^dx'  = Ei ^^(x^^^x^dx' 

^..(x^H ii    (x^dx' f    o sc 
fi|) H ^, - ^.H i{i Idx' 
L sc orf   f Or8CJ 

" " 2M[*SC(X) Ä^f-^ÄV 

2M 

.     ikfx 

A   . fX ^r 8l^kfx + 6f> - sin(kfx + 6f) ^r Asce 
sc 

2M  sc e 
(2.26) 

the next to the last equality holding by virtue of footnote 17 and 

Eqs. (2.21) and (2.25). 

Combining (2.26) and (2.23), one has 

(+) 

16eV2 
^ox 

hVk^ 
dV 

i()f (x)^i(x) — dx (2.27) 

where the limit x -»■ » has been taken in the l.h.s. of (2.26), the limit 

being well defined by virtue of the asymptotic behavior of the various 

factors in the integrand. 

L 

For unpolarized light, the standard replacement 

r2  1 -2 r  ->■ — r 
^ox  3 "o 

is tc be employed;   (2.27)  then becomes 

_16e^J_, 
(+)   " StVk^ | 

dV 'Pf(x)4'i(x) 5J dx (2.28) 

16 
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For the case of an exponentially repulsive potential 

V    =    V    e 
o 

-ax 
(2.29) 

the integral on the r.h.s. of (2.28) may be evaluated explicitly. The 

procedure is very similar to that of Ref. 2, Chap. I, but will be given 

here briefly in the interests of a self-contained presentation. 

The solution of 

Ety    = - v - [-i 8Z . „  -ax 
9x    o 

(2.30) 

(for arbitrary E) with the asymptotic behavior 

iKx) sin(kx +6) (2.31) 

o 
is 17 

,1/2 
Mx) = [(2k/a.) sin ^]  K^CO (2.32) 

where 

(2ME/ft2)1/2 

■ (!) 

/2MV 
.1/2 

-ax/2 

U' 

(2.33) 

(2.34) 

:i 

and K (?) is the modified Bessel function of the second kind; for the 
21 k case at hand, the order v ■ —*— is imaginary. 

Inserting (2.32) and (2.33) into (2.28) one obtains, after a little 

algebra 

4e2fA2    2^ 
(+) 37MO 

2Trkf 
sin   sin —— 

or     a      a \K\ 

17 

(2.35) 
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where 

X of 1 
(2.36) 

As in Chapter I of Ref. 2, it is our good fortune to find the above integral 
Ifi 

in the literature«   The general formula (on page 334 of the quoted 

reference) is 

.s-3 -s 

irax)K (ax)x  dx " - K.(ax)K%i(ax)x
8"1dx - 

'o 

^f
S r[|(s+y+v)] rdcs-y+v)] 

r[j(s+y-v)] r[j(s-y-v)]    ; 

Cf?e a > o,<£e s >   |dEey|  + |(^e vj (2.37) 

O 
Here, with a - 1, s = 2, p = 2ikf/a, v = 2iki/a, the conditions for the 

validity of (2.37) are obviously fulfilled. Using also the well-known 

formula 

r(l+z)r(l-z) = 
ZTT 

simrz 

one obtains, without further ado 

(Tr2/a2)(k2-k2) 

Ar= k 
iinh[i(kf+ki)] sinh[j(kf-ki)] 

(2.38) 

1 
2 

(Tt2/a2)(2Mü)/*) 

!inh[j(kf+ki)] sinh^^-k^] 

7T2 

07 /2irk 
2^/^ 

cosh f ?)- CO *m (2.39) 

18 
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z 
Substituting  (2.39)   into   (2.35), one has 

16Tr2e262sinh(2TikJ/o)sinh(27rW  /a) 
j) 1 r 

(+)    =    3?W (cosh 2Trk /a - cosh  2TTk./a)' 
(2.40) 

For the eventual calculation of an absorption cross-section, it 

is desirable to develop an expression for the net energy, AE , which 

is transferred from the electromagnetic field to the charged particle. 

To obtain AE it would appear necessary to supplement (2.40) with an 

explicit expression for the alternate process of stimulated emission 

[i.e., to calculate P/J. This, however, can be avoided by appeal to 
20 the principle of microscopic reversibility,  which in the case at hand, 

states that 

0 
p(+)(ki"kf) = p(-)(kf "V • (2.41) 

One now introduces this relationship into the general expression for 

AE , which reads 

AE  = fio) 
*- o 
d^Kk^ p^k^k^ - dkfI(kf)P(-)(kf - k^ 

(2.42) 

where  e.g., 

I(ki)dk. 
kidki e 

-E./kT 
i 

k1dki e 
-E^kT 

dEi -E./kT 

TT" 
e (2.43) 

o 
represents the probability that the wave vector 

19 



,« 
• 

of the incident particle lie between k. and k.+dk.,, and where, as before, 

k, and k. are related to each other by the energy-conservation require- 
f     i 

ment 

E  = E ± fiw (2.44) 

One then has (upon noting also from (2.44) that kjd^ = kfdkf) 

AE  = lia) 
0) 

dE. / -E,/kT -E /kTl 

. *4i--fl"/kT) 
» -E,/kT 

1 o 

P(+)(Vkf)dE./kT (2.45) 

where, for P/-+\(
kj">kf)» one inserts the r.h.s. of (2.40) 

c 
The stage hao now been reached where, in order to make further 

progress, some connection is needed between the one-dimensional treat- 

ment of this section and the actual three-dimensional situation. The 

analogous problem arose in Chapter I of Ref. 2 (pages 31 et seq.), and 

was resolved by appeal to the so-called Takayanagi approximation (for 

discussion and reference to Takayanagi's paper, consult Ref. 2). The 

principle result was that [as intimated above in footnote (19)] the 

• ..£e of absorption of energy per polar molecule, W, is given by a 

relationship of the form 

W = AE /T ,., 
ü) eff 

(2.46) 

where 1/; ^ the "effective" collision rate, is to be determined 
eff 

primarily by classical kinetic conditions, similar to (although more 

complicated than) those of Ref. 2. As in that case, however, for the 

purposes of obtaining upper estimates, it will ultimately be assumed that 

1/T eff 5! 1/T (2.47) 
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namely, a reliable upper bound for 1/T ff: is the gas-kinetic value, 1/T. 

Values of the latter quantity are readily deduced from gas-kinetic cross- 

section data given in the literature. 

Combining (2.46), (2.45), and (2.40), one has 

16TT2e2£2      /,     -lWkT\ 

3a' -fito eff 

2TTk 2TTkf    -E /kT 
sinh  sinh -—^ e dEjkT a a i' 

2iTkx 

o   cosh - cosh 
Zirk.j' 

~r"J 
(2.48) 

(    ) 

The absorption cross-section,  Q(w), may now be determined simply 

by dividing  (2.48) by the incident electromagnetic flux, 

T- C x /T = ■r- o „.    One has 4Tr   —^      —       2^      o 

Q(ü))    = 
S^re2 (l-e^^1!     1 
3ca' hw       ) eff 

2iTk 2Tfkf    -E /kT 
sinh -^ sinh -j— e dE /kT 

cosh 2Trk-/a-cosh 2Trk /a 
(2.49) 

From (2.49), one obtains the absorption coefficient, K(ü)) by the 

standard relation 

K(ü))    =    N Q(ü)) (2.50) 

Ü 

where N    is the density of absorbing molecules. 
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K 
It is now of Interest to discuss two special cases, (a) that for 

which the impact approximation is valid and (b) the more realistic 

situation of finite duration of collision-time. 

A.  Impact approximation; This is achieved most conveniently 

by taking the limit ct + <*  (i.e., zero range of interaction 

potential.  In this case one replaces the hyperbolic 

functions by their lowest-order nonvanishing terms in 

their Taylor series, obtaining (after some algebra) 

Q(u)) 
4e^ 

STTMCW'
1 

ll-e 
-Uu/kT 

Hü) J 
f x1/2(x*WkT)1/2 e-X dx 

4e' 
3TTMCü)

,! (i- 
-WkTl   e 

/ 

iWkT 
Ki(fb/2kr) (2.51) 

e 
(the integral being obtainable in terms of the Modified 

22 
Bessel Function ). In the classical limit (fiw « kT) (2.51) 

es to 

Qc^) 
4e2 

STTMCüJ^ 
(2.52a) 

which, apart from the factor 4/J, corresponds to the 
23 

classical Drude expression« 

In the "quantum" limit,-hco >> kT 

1/2 

qu 
4e2    |TTkT| 

3TrMcü)z  I Tfiuii (2.52b) 

From the practical standpoint, the principal significance 

of (2.52b) is that its order of magnitude is essentially 

the same as that of the classical expression (2.52a) as 

long as IWkT is not too large.  In our case, with fiu/kT^, 

so that the magnitudes of (2.52a) and (2.52b) are comparable. 
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B. Finite collision times: A useful simplification of (2.49) 

which will be employed here is the replacement of the 

various hyperbolic functions in the integrand by exponentials, 

For the justification of this step, let us digress momen- 

tarily, to list some typical magnitudes of 1^, kf, and a. 

First of all. as noted in Section I [text subsequent to 
8-1 

Eq. (1.51)1, a representative value for a is 4x10 cm . 

For the k's, one proceeds from the general expression 

k - 
9MF 1/2 9  - i/2 -1 Sj& = 2.3 x 10y(^E)  cm 1 (2.53) 

where ^71 is mass of the particle in units of hydrogen 

atom mass and E is the energy expressed in e.v. One then 

notes that, even for the extreme case of IR = 1, and for 
o 

E = kT **.025, one has k«»3.7 x 10 and, e.g.. 

2Trk.       .     2Trk./u|      -4TTk /a\     .     2irk /a,        ,,1 
_i.l.     i    (l-       l   ).|. (l-e") sinh 

so that the replacement sinh 
2iTk1      ,     2Trk /a 

a 2 

involves the negligibly small error,  e 
-11 

Introducing,  then,  the replacements of hyperbolic functions 

by appropriate exponentials in  (2.49), one has 

f«    -E./kT 

Sire^   I l-e I     1 
3ca^ Ha) eff 

dE /kT 

4 8inh2[i (kf-ki)] 

2T\e2 

3coi^ 
'l-fe-^

/kT       1 
•ftü) eff 

-E /kT 
e dEi/kT 

sinh^ 
2TTü) 

a(vf+ v^ 

(2.54) 
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.1/2 .1/2, .1/2 
where vi = UE^'M)

1^ and vf = (2/M)
i/ (E^ *u))   are the 

velocities incident and scattered charged-particle, 

respectively. 

One may now consider two subcases, according to whether 

the argument of the hyperbolic £,ine in (2.54) is small or 

large compared to unity. 

H-j  2Tm ^ 1      In this case the hyperbolic sine is 
(vi+ Vf) 

replaced by its argument and one has 

i2        1-e 
-■tiu/kTA 

ÖCTTÜJ'' "fiü) 

■"o 

-E./kT 
dt^kT 

c 

>2       l-i 
-«a)/kT\ 

"STTCüJ2" I tlw/kT 14 [■" 2 + (x+WkT)1/2 e      dx 

(2.55) 

which is again an impact-type expression (somewhat 

similar, in fact, to the first equality of (2.51). 
24 

(2) 
2iiu 

a^vi+ Vf^ 

» 1.     In this case,   the replacement 

sinh(   ...   ) -»■ 2" e 

is appropriate,  and one has 

ire 
3ca' 

2    1- 
-Ru/kTl 

■ftd) eff 

-E./kT    -2iiü)/a(vi+vf) 
dEi/kT 

Ü 
24 
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r: which, with this introduction of a new integration 

variable, y = E /ftu), becomes 

Q = 

^2 l^-tWkTJ  i 
Sea2 \   kT  / T 

.00 

eff 
e-bF(^ dy (2.56) 

where 

F(y) = ay + 

y +(y+i) 

_ ah_ (fiiu I 
TrkT 12MI 

1/2 

(2.57a) 

(2.57b) 

and 

a rniü I 

1/2 

(2.57c) 

The integral in (2.56) is evaluated in Appendix II; the result is 

contained in Eqs. (II.7), (II.6), and (II.8). Combining these equations 

with (2.56) and (2.57a,b,c), one has 

ire' 
3ca' 

i-e-WkTl _j_ AikiA n . 1 
™     I \ft K ** I [y8    yg+i 

-1/2 

^/2
+(ys+i)1/2 

exp fw[ ysWJ2(y.+i)in 
S       "S } (2.58) 

where (cf. Eq. 11.4) of Appendix II and (2.57b), ys is given implicitly 

by the relation 

^V"172 
y1/2

+(, +1)1/2 

s s 
irkT /   M   |1/2 

aft    \mui.l (2.59) 
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e Values for a and v = a)/2iTc, for various values of y , are given 
25 s 

in Table I. 

TABLE I 

a vxlO cm 

1.105 3.75 

.826 2.10 

.664 1.36 

.553 .943 

.476 .695 

.367 .415 

.299 .276 

.1 

.15 

.2 

.25 

.3 

.4 

.5 

(' 

From this table one may find values of y for given v by e.g. 
s 

graphical interpolation.  It would, in fact, be desirable to carry out 

sufficient numerical calculations so as to obtain a plot of the absorp- 

tion cross-section, Q, vs. external wave-number, v.  Due to limitations 

of time, this elaboration will be deferred for the final report. How- 

ever, in the next section (immediately below), a numerical upper-limit 

estimate for Q (based on Eqs. (2.58) and (2.59) will be carried out. 
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3.   DISCUSSION OF RESULTS AND POSSIBLE EXTENSIONS 

The first order of business in this section is the comparison of 

predictions of the foregoing theory for the optical absorption coef- 
3 

ficient, i.e., with the experimental results reported by Burch. 

Starting from the relation 

< = N Q 
ax 

(3.1) 

where N , the density of absorbing molecules, is related to the cor- 
St 

responding pressure, p (expressed in torr, mm. Hg) via the formula 

N  = 3.2 x IG16 p cm"3 
a ra 

(3.2) 

and introducing (2.58) with  — written as 
Teff 

eff 
= N < v> Q ,., 

p    xeff 
(3.3) 

(with N , the density of perturbing molecules given by the analogue of 

(3.2) namely. 

N  = 3.2 x 1016 p cm"3 
P P 

(3.4) 

<v> the mean relative velocity of the colliding molecules, and Q f<. 

and "effective" collision cross-section, one has 

Tre2N 

K = Qef f Na 3^ 
< v> FAkTl 
c  Lliü) J 

1/2 
>-l/2 

exp /• • • ^V (3.5) 

where from (2.58) 

F" = .2. + _I_ + _l i  
y   y +1   1/2 , ^sl/2 
s  's    yg  (ys+l) 

-1/2 
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c and the argument of exp /....| is - pr 

given by (2.59), or Table I. 

.. Ill,    ..,,1/2 
ys+2ys  (ys+1) 

, y being 
s 

Before any numerical calculations are possible, it is necessary 

to determine Q ,f in terms of knowu physical parameters. Anticipating 

the results of the numerical calculation given below, let us bypass this 

problem by adopting the philosophy that we are calculating an upper 
26 

bound  for K.     In line with this approach, we write down an upper- 

limit estimate for Q ,f by setting it equal to the gas-kinetic cross- 

section, Q .  For the latter quantity, a rough estimate is provided by 

Laudolt-Bjornstein (6th Ed.) Vol. I, p. 369, where a value for the gas- 
—8 

kinetic diameter oT of H^O — namely 4.59 x 10 cm — is quoted.  Intro- 

ducing this value into the formula 

^K TTa„ 

(appropriate for H„0 - Ho0 collisions), one has 

o Qeff " QK ^ 66 X 10"16cm2 (3.6) 

8 -1 
Using for a the previously-cited value of 4 x 10 cm 

300oK [together with formula (3.2)], one finds 

and 

Tre2N 
,-6 „■7r|   =    1.2 x 10    p  . jorkT rp (3.7a) 

Taking for the mean relative velocity of H90 - H.O collisions the 
27 11 

relation 

v, 
one has 

1/2 

■    .76 x 10 cm/sec. 

     ■    2.5 x 10 (3.7b) 

Q 

- 
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In proceeding further, it is convenient to choose for the external 

wave number the value v = 934 cm , which corresponds (cf. Table I) to 
3 -lv y - .25 and a = .553 (and it: nevertheless sufficiently close to 10 cm ). 

s 
One then has 

(■ 

4TrkT\ 
1/2 

1.78 (3.7c) 

H -1/2 
.390 (3.7d) 

Inserting these results [together with (3.4) and (3.6) into (3.5)], 

one finds 

K <" 4.4 x 10   p p exp{....} . (3.8) 

Turning now to the experimental results, Burch concluded that in an 

atmosphere-like environment with a H.O-vapor pressure of 15 torr (mm Hg), 

self-broadening (i.e., H20 - H-O collisions) constitutes the main ab- 

sorption agent. In xlne with this conclusion, let us therefore insert 

p = p =15 torr 
a  ^p 

into (3.8), thereby obtaining 

rr     ,«"7 5f 10  exp{ ....]■ . (3.9) 

Deferring for the moment the numerical evaluation of exponential 

factor, we note that, under the cited conditions, Burch obtains .88 

transmission of 10 micron light through a path of 1 km; this cor- 

responds to an absorption coefficient 

ex -10"5 log .88 1.3 x 10"6cm"1 (3.10a) 
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which is one order of magnitude larger than the pre-exponential factor 

in (3.9). 

Turning finally to the exponential factor, one finds [from the 

expression for its argument given in the text immediately subsequent to 

(3.5)] that (with WkT = 2TTllicv/kT = 3.98) 

-2 
exp{....} - exp{-(3.98)(1.37)} =■ exp|-5.45} = .43x10  .  (3.10b) 

c 

It is thus seen that the theoretical value of K  is smaller than K 

by at least three orders of magnitude! 

exp 

In seeking a road out of this impasse, one should note that the 

primary "culprit" is the exponential factor, accounting, as it does, 

for two out of the three orders of magnitude of discrepancy. Physically, 

this factor represents the effect of finiteness of collision time TC - 

in particular the fact that TC is so large that the condition for the 

validity of impact-type theory (namely, ü)TC < 1) is grossly violated. 

In this connection, it may be helpful to recall the remarks of 

the second paragraph of Chapter I of Ref. 2 (albeit somewhat rephrased 

for application to the present problem). Three alternative physical 

regimes were therein described. 

28 
1. The domain of external frequencies obeying the condition 

tor < 1: This is the regime of the Impact theory, 
c 

2. For frequencies such that ü)TC > 1, the spectral profile 

will follow the predictions of the so-called statistical 

theory. In this theory, one focuses attention on the 

collision-induced perturbation of the instantaneous 

transition frequency.   Two possibilities arise. If 

a collision gives rise to perturbation of the system 

(during the transient existence of the collision complex 

H90 - H„0), such that a perturbed transition frequency 

o 
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momentarily coincides with the external frequency, oi, the 

spectral intensity, I (to), will be proportional to the 

occurrence-probability of such a perturbation — i.e., 

the probability that any one of the perturbed (rotational) 

transition frequencies lie within a unit different ial 

frequency range about the spectral frequency, w. 

3.  If, on the other hand, there are no collisions which 

give rise to perturbed transition frequencies in the 

vicinity of the spectral frequercy, w, one may expect 

the spectral intensity, 1(a)), to decrease exponentially 

with increasing frequency-discrepancy (said frequency- 

discrepancy being the difference between u and the closest 

perturbed (rotational) transition frequency). 

With respect to the theory of Section II of this paper, we have 

already seen that, under the given physical situation of interest to 

us, the condition UT  < 1 does not apply, so that the impact-type 

frequency distribution (case 1) does not occur. 

As far as the second of the above-listed three cases is concerned — 

the theory contains no effective mechanism for rotational perturbations 

of the magnitude required to encompass frequencies in the domain of 
3 -1 

interest (10 cm ).  The frequency variation of the absorption coef- 

ficient therefore falls into the third category — as is in fact 

evidenced by the appearance of the exponential factor on the r.h.s. of 

Eq. (3.5) (the negative argument of which is ro.adily shown from Eq. (2.58) 

and Table I to be a numerically increasing function of frequency). 

At this point a qualifying remark is in order.  In a strict mathe- 

matical sense the change in rotational motion which arises via inter- 

action of the rotating dipole with the (assumed exponentially repulsive) 

potential of the colliding particle — taking place as it does in a 

finite time, T — is characterized by a frequency-occurrence distribution 
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3-1 
which certainly includes the spectral frequency of interest (v = 10 cm ) 

(otherwise the absorption coefficient at that frequency would be zero). 

In fact, from this strictly mathematical point of view, there is no 

distinction between cases 2 and 3. However, especially under the con- 

ditions (JJT >> 1, it is, in 'jhe opinion of the present author, physically 

meaningful to ask whether, within some sub-interval of the collision 

time, T , the rotational motion may be characterized, at least momen- 
c 3-1 tarily, by a frequency in the vicinity of 10 cm . ^iuch a possibility 

will in fact be suggested at the end of this section; although detailed 

calculations have not been performed, it is (hopefully) anticipated that 

the suggestion will provide the key to the understanding of Burch's 

experimental findings. 

However, to proceed systematically, let us first investigate one 

other possibility of increasing the absorption cross-section — a 

possibility suggested by comparison of (2,58) with the previously 

obtained impact expression (2.55).  Such comparison — taken in con- 

junction with the text immediately subsequent to Eq. (3.10) — 

immediately poses the question as to whether some mechanism can be 

found to diminish the argument of the hyperbolic sine in Eq. (2.54) 

to the point where sub-case 1 of the previous section obtains, i.e., 

where 

2™ ~'    1 . (3.11) 

lw 
■ 

a(v.+vf) 

Such a mechanism is, at least in principal, provided by the existence of 

attractive interactions; the question as to whether it is actually ade- 

quate will now be studied. 

In order to simplify the discussion, let us introduce the 

approximation of considering the attractive interaction, V (x) (which, 

in practice would vary as some inverse power of x1) to be constant,-V, 
30 

— equal in magnitude to its value at the classical turning point. 
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Just as In the somewhat analogous Takayanagi approximation, discussed In 

nß Ref. (2), (Chapter I, p. 31-32), this approximation should be valid - at 

least for semiquantitative estimates — when V (x) varies sufficiently 

slowly so that 

ki I IT108 va(x)| > 1 <3-12a) 

kf   I   d7l08 Va(x)l   >  1  ' (3.12b) 

Since this condition is already on the borderline of being obeyed by the 

relatively rapidly varying repulsive potential, it will here be assumed 

to be applicable without further ado. 

With the assumption of constant attractive potential the analysis 

becomes rather simple, in that the velocities v. and v. in (2.54) are now 

given by the formulae 

v1 - U/M)"" (Ei + VX (3.13a) .1/2 ,„ . v y/2 
a 

v^ = (2/M)1/2 U ^V +tiü))1/2 , (3.13b) 
f J.   a 

31 
with E. retaining its former significance as the initial energy "  at 

X "> o". 

Introducing (3.13a) and (3.13b) into Eq. (2.54) - together with the 

additional assumption (to be verified below) that for the case of interest 

V is sufficiently larger than E to permit us to neglect the latter 

quantity in (3.13a) and (3.13b), the Integral in (2.54) is Immediately 

evalued, and one obtains 

3ea 

^-Wkt \   1 I g.       I 
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One sees that, provided that V is sufficiently large - i.e., large 
Si 

enough so that the condition 

Zirüi/q 

U/M)1'2 [v^-Kv«..)1'2] 
<  1 (3.15) 

32 
is obeyed. Impact-type behavior will result, with Q being given by 

,2 

e i-e ,iL,a. » ._..._,,   . (3.16) 2        ,    -Hw/kT    fvi/2+(vi/2-mw)] i 1-e L a a J 
IM2 ^ 3ITMU C eff 

If, on the other hand,   (3.15)  is not fulfilled,   (3.14) becomes 

^4K3^-- 4TTü)/a 

3ca eff (2/M)1/2[vy2
+(Va-rtla>)1/2 ] 

(3.17) 

<. In order to proceed further it is now necessary to put numbers into 

(3.15).  Inserting values for the physical quantities which have already 

been employed, viz: 

a - 4 x 10 cm 

v - 934 cm 
-1 

and M = 2 M 
H 

into (3.15), one obtains 

1/2 
V + (V +-hu)) '  > 2.9 ev . 
a    a 

(3.18) 

L 
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The required value of Va is then seen to be ^ (2.9)
2- 8.4 e.v. Such a 

magnitude is impossibly large. 

A reasonable estimate of the magnitude of V to be expected in 

H20-H20 collisions may be obtained by using force-constant data derived 

from experimental values of the virial coefficient in H20 vapor. A fairly 

exhaustive discussion of various representations of the interaction- 

potential between two water molecules - with associated numerical values - 

is contained in the book, Molecular Theory of Gases and Liquids by 

Hirschfelder, Curtiss, and Bird (HCB).  For our purpo>-3S, one of the 

simpler forms, the so-called Stockmayer potential [HCB, page 211, Eq. 

(1.3-33)], 

4e 
.12 

IzLzl    3(üi*-)(H2'-) 

- 4e 
12 2 

r3 [2 C08 ei cos e2 + sin ei si" e2 M»(#2-*l> O-1*) 

will be employed. In this form, the interaction between two identical polar 

molecules is expressed as a sum of a Lennard-Jones potential (r-intermolecular 

distance) and a dipole-dipole term, in which the charge distributions of 

the individual molecules are represented as point dipoles (9., <j., and 9 

^2 being the polar coordinates of the dipoles with polar axis parallel to 

the intermolecular vector, r). The values of the constants e, and a for 

the H20-H20 interaction are listed in Table (3.10-1) (page 216 of HCB). 

They are 

e/k - 380oK (3.20a) 

v> a - 2.65A (3.20b) 
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which, together with the known dlpole moment 

-18 
yH 0 - 1.84 x 10   e.s.u. (3.20c) 

provides us with a concrete expression for V(r). 

The procedure to be used here for obtaining an upper estimate for 

V from (3.19) Is as follows. One maximizes the attractive Interactions 

by taking the dlpole moments JJ_, and y „ both parallel to the Intermolecular 

separations (I.e., 9- - 6« ■ 0), (3.19) thereby reducing to 

4e 
12 

(3.20) 

o 

2 3 
One then Identifies V with the values of ay /r , where r Is the closest 

a K   '      o 
distance of approach of the two molecules. An approximate condition for 

33 
the determination of r is 

o 

V (r ) = 0 
o 

(3.21) 

which with the Introduction of a new variable 

o     o 
(3.22) 

gives 

0 - V(x ) 
o 

4e < x - x -  r
0 1 o   o  «3 

l        2a e •) 

(3.23) 

Discarding the trivial solution, x - «>, one has then to solve the 

cubic equation 

L 
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*> 

I \ J 

-        2 
xJ - x - -^r-    • (3.24) o   o  „ 3 2a e 

From (3.20a), (3.20b), (3.20c), one determines the numerical value of 

the constant term In (3.24) to be 

2 
-V • (3,25) 
2a e 

A sufficiently accurate solution of (3.24) and (3.25) is 

x = 1.48 (3.26) o 

which, when substituted into the last term of (3.23), gives 

v(R*x) . 2^ = 2^ x _ 5>4 x 10-13    „ ^ ev >       (3>27) 
a       J    J o r    a 

Comparing (3.27) with the value of V required to satisfy (3.18) 

— namely V > 8.4 ev — one sees that (3.17), rather than the impact ex- 
a 

pression, (3.16), is the appropriate formula for Q. Let us therefore 

combine (3.16) with (3.1) and (3.3) to ubtain the following expression for 

the absorption coefficient 

< = Q.« N 
0 2 /,  -tUukT \ 8TTe   l-o 

eff a „2 l   Tiü) 3a  ' 

<v> 
— exp 
 4Trü)/a  I 

■(2/M)1/2[v^+(Va+1.«)1/2] j' 

(3.28) 

Upon inserting the numbers given by (3.21), (3.7a), (3.6), (3.7b) and 

37 



(3.27) into (3.28), and utilizing the (appropriate) formula M - 2^, 

as well as a - 4 x 1010 cm, v = 943 cm , and T - 300 K, one has (with 
..,    i    r -WkT the neglect of e     , 

K 4 1.06 x 10  p p exp^-4.6^ cm 
-1 

(3.29a) 

2.5 x 10  exp {-4.6} cm 
-1 

(the last number being obtained from p = p - 15 torr, in conformance 
a   P _4t6 

with Burch's experimental conditions). Finally, with i = .01, one 

has 

-9  -1 
K = 2.5 x 10  cm (3.29b) 

which exceeds the previous upper limit estimate, given by (3.9) and 

(3.10), by a factor of 2.5/.43 - 5.8, but still falls short of the ex- 

perimental number, given by (3.10), by a factor 

K /K . > 520 
ex th 

(3.30) 

i.e., still close to three orders of magnitude!  It thus appears that a 

substantially new physical ingredient has to be injected into the theory. 

In what follows, one such possibility, which appears to be hopeful, will 
34 

be discussed briefly. 

The new physical ingredient is in fact contained in Eq. (3.19) 

— namely, in its dependence on the angular orientations of the dipoles 

(as given by the second term). Preliminary estimates indicate that, at 
1/3 

intermolecular distances of the order of ro - a/xo   ^ 2.2A (as given 

by (3.26) and (3.20b)), the rotational motion is sufficiently hindered 

so as to be converted into libration about the potential minimum 

(9 - e - 0). According to (rather crude) preliminary estimates, the 
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associated librational frequencies are in a domain ^ 500 cm .  In view 

of the fact that, at the distance of closest approach the dipole-dipole 

approximation is certainly inaccurate for quantitative estimates of 
35 

librational frequencies,  this estimate should, in the opinion of the 

present authors, be regarded as promising 

In this connection, some remarks concerning the absorption spectrum 

of H„0 in its condensed phases are in order. It is known  that whereas 

the vibrational spectrum of H-O vapor is largely retained in both water 

and ice (with relatively small frequency shifts), the rotational spectrum 

is wiped out  In its place, there appears a broad absorption band, whose 
-1 -1 

maximum varies from 700 cm  (liquid) to 850 cm  (ice at -90C). This 

band,usually designated as a "librational" band, is considered from 

hindered rotational motion — the latter being associated with H-bond 

formation. The H-bond in turn is generally considered to owe its 

existence to the primarily electrostatic attraction between one of the 

(positively-charged) H-atoms of a given H20 molecule and the (negatively- 

charged) 0-atom of a neighboring H^O molecule. 

Apart from quantitative detail, this picture-is essentially 

identical to that suggested in this section  Namely, even in the gas 

phase, at sufficiently close distances of approach of two colliding ELO 

molecules, a temporary dimer (I^OK is formed; it is eminently reasonable 

that, during its (admittedly momentary) existence, this dimer possesses 

librational (hindered-rotational) frequencies in the spectral range of 
3 -1 

interest (10 cm ). The principal problem is then to compute the 

occurrence-probability of a unit frequency range about an arbitrary spectral 
37 

frequency; according to the statistical theory of collision broadening 

a knowledge of this oxurrence-probability will lead directly to the 

absorption coefficient for said spectral frequency» 
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e APPENDIX I 

In this appendix, the relationship between the real problem of 

absorption associated with the collision-Interrupted motion of a rotating 

dlpole and the text-model of absorption by a charged particle undergoing 

collisions with fixed scattering centers will be developed. 

The basic starting point of the treatment Is the Kramers-Helsenberg 

formula for the polarlzablllty, a, of a (rigid) rotating dlpole, Inter- 

acting with a fixed (random) array of scattering centers (generalized to 

Include the dlssipatlve and finite temperature effects). This expression 

reads 

■-II -ßE en <n|liz|m> 
2  r 

ran 
E -E -rtlw+lRs 

n    m 

o 
E -E -tlai-ltis n    m 

(1.1) 

Here 0 ■ 1/kT (with k and T respectively Boltzmann's constant and 

absolute temperature), Z Is the partition function of the system E Is 

any one of the (exact) elgen-energles of the total system,< n| y |m> 
38       z 

Is a typical matrix element of e.g., the z-component  of the dlpole 

moment, u Is the external frequency and s an Infinitesimal positive 

number. 

Of specific Interest here Is the Imaginary component of polarl- 

zablllty, a..  This quantity Is gotten by taking the Imaginary part of 

the r.h.s. of (1.1); with the aid of the standard relationship 

11m T   1  
Im —? . 

s-^-o   x ± Is 
+ Tr6(x) 

c 
It takes the form 
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n 

-ßE 
IT   \ n 

i      Z   / <n|Mz|in> 

nm 
6(E -E^-Fhüi)  -6   (E -E -110)) n    m no 

^ -SB      -ßE^     | 
" 2 /        ^e        "e        >    <n|w,|m> 

4PM Z 
nm 

ö(E -E -ffttü) 

,_ -ßhü)   ^ -ßE      -ßE^ 

z 1+e-ßtiui L 
nm 

2    (e      "+e      m) < ^W^y 6(E -E +hü)) n    m 

Z tanh ^" 
\ i2 r i 
2_e      ll    <n|uz|m>|     16 (E^-rtiw) + 6 (E^-ho,) (1.2) 
nm - l       J 

( ) wherein the device of oummation-index interchange has been utilized re- 

peatedly, and where cognizance has been taken of the relationship 

E - E + ftw m   n 

in writing the third equality. 

One now expediently introduces the Dirichlet representation 

<S(x) 27 J       e 
ixt 

e        dt 

:: 

for the delta function into (1.2); the standard rules of matrix multi- 

plication may then be utilised to rewrite (1.2) as 

i. . ßhu r ai " * tanh 1" J  C08 ut<Wa(t)y3!(o)>dt z '^z (1.3) 
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where 

<yz(t)yz(o)> E -Tr<e^e    Uze    y } (1.4) 

is the dlpole-dlpole "response" function, H being the Ha'jiiltonian 

operator of the total system. 

In this appendix, the discussion will be restricted to classical 

condltlo.. - .pecflcll,40 

ftu < kT (I.5a) 

Hw ^ „..  , < kT 
rotational 

(I.5b) 

( 

(1.3) may then be approximated by 

.-Ho 
ßu   f aimTJ cos u)t<p  (t)u  (o)>dt  . z        z 

(1.6) 

In order to proceed further, specific assumptions concerning the 

dynamics of the system have to be introduced. In this treatment, said 

dynamics will be described by a stochastic model, of the general type 

developed in the theory of Brownian motion. Specifically, it will be 

assumed that 

(a) in the absence of collisions, the dipole undergoes simple 

rotatory motion (characteristic e.g., of a simple rigid- 

rotator possessing no internal angular momentum) and 

(b) at certain "impact" times, t , the vector angular velocity, 

uj., changes abruptly to a new value, ÜJ-I ; however, the 

L 
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41 
orientation of the dipole, y./u, remains unchanged.   It 

is further assumed that the direction of üjj. •., apart from 

being perpendicular to the rotator-axis (and hence to ji.) is 

otherwise randomly arbitrary. 

On the basis of this model, the calculation of the response function 

<^U (t) u (o)^> may be carried out as follows.  In the time interval be- 

tween zero and t (here considered i.;sitive for the sake of definiteness; 

later, it will be established that the response function is an even 

function of t) there will in general occur a certain number of impacts at 

times tj, t- 'n-l* in each of the n intervai8 in-between collisions, 

the motion is that of pure rotation.  Denoting by £, the value of £ at 
t'h 

the i  collision time, t., one has 

%+l * Hi 
^(t) - JJ. cos w. (t-t )  sin cj. (t-t.) . 

1     "i+l       x    1 

Using the above stated assumption concerning randomness of 

direction of the angu1-«.r-velocity vector, w..-.. in a plane perpendicular 
42 -i+i 

to £., one has immediately  (upon replacing i by i-1 for convenience) 

<l(t,)> =<;iii_1><cos a)i(t
,-t)>; (t1_1 S t ä t1; t0 - 0).  (1.7) 

In particular 

<£i> =<iLi_]><cos «i ^i-ti-^ 
=<^i-i cos ^i ei> 

where ÖJ " tj ~ tj i is the time interval between the i't'ri and the (i-1) 

collision; the various 6. are assumed to be distributed according to the 

standard relationship 

i'th 
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w 

o 

w(ei)dei - e 
1 de^x . d-^) 

For the final interval between the times of last impact, t^ and 

time t, one has 

<ü(t)>=<Vl><C0SUnen> (1-9) 

with 6 - t - t ,, the occurrence probability of en (i.e., that there 

be no collision in time 9 ) being given by 

-e It 
W = e n   . (I-10) 
n 

Putting all these results together one has for the contribution to 

<" M (t) u (0)> due to all processes involving n collisions between 

time zero and t. 

CO 00 

<U (t) U (0) >:>+)- ^v^n^T 

n (<cos a)iei> e t   ^  • (i.u) 

On the r.h.s. of this expression, the factor, 3, in the denominator 

arises from taking an average overall initial orientations (at t-0). and 

the delta function guarantees that the sum of all the intervals, 6^ is 

equal to t. Finally, the superscript "(+)" on the l.h.s. depicts the 
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fact that the relationship is valid only for positive time; otherwise the 

r.h.s. is manifestly zero. 

With respect to negative times, it may be noted that, since the 

correlation function depends only on relative time, i.e., 

<yz(t+t0)y2(t0)> =<yz(t)Mz(0)> (1.12) 

one has 

<yz(-t)Mz(0)> = <uz(0)iiz(t)> . (1.12a) 

Now, in a classical theory, y (t) and y (0) are c-numbers, so that the z        z 
order in which they are written is immaterial.  It then follows immediately 

that, for t > 0 

<yz(-t)yz(0)>=<yz(t)yz(0)> 

or 

<yz(t)yz(0)> =<yz(|t|)yz(0)>S
+) (1.13) 

the r.h.s. of (1.13) being given by (I.11). 

With the aid of (1.13), one may rewrite the basic relationship 

(1.6) for a. as 

ai = gu /  cos ut <^yz(t)yz(0)> dt . (1.14) 

o 

Since, now, only positive times are involved, one may forthwith introduce 
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(I.11) into (1.14); a subsequent time integration then yields (upon also 

summing over all interval numbers, n, from one to infinity). 

i 

2  v— n  I 

3 

BAl/x+ia,) <—    n r 1 -o.u/Ti-iu. 
.. )  JI  ( dO. <^cos u, G,\ - e 

n=l    V 

'1 
n=l 

1-iCüT 

2   2 2 
(l-iwx)  + W.T. 

i i/ 

(1.15) 

The braces signifying the remaining average over each of the u^. 

c 

Concerning this average, it is undoubtedly most appropriate to 

assume (as in fact done in Gross's paper ) that the w are each thermally 

distributed. However, in the interest of transparency, the simpler pro- 

cedure of taking all the u. equal to one and the same angular speed, m^ 

given eventually by an appropriate thermal average will be adopted. 

Introducing, then, the replacement u. -► w , and carrying out the 

sum over n, one obtains, after a little algebra 

i? 
(-im) (1-JUT) 

m V 2 
(-iwT)(l-i(jjT) + a) 

(1.16), 

3 J) m 
0) 

1 - 2 2 
r 

or, more explicitly. 
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T> o  2 2 3y u)r iZ^ 
.2 2,2 ^ 2.2 (1.17) 

For the case in which 

T     r' 
(1.18) 

(which applies to our problem), and for w not too close to u (i.e., in 

the far wings of rotational lines), (1.17) reduces to 

2   J  ah) 2 ^(l/t)   / 2^\ 

(1) (1-Ü) /O) ) (JÜ \      (1) / 

At this point,  it is desirable to take the thermal average over u  . 

For the case of a simple  (linear)  rotator,   the weight function is 

oi    e 
r 

-Blur/2 

so that 

S    2\ 2 (I.20a) 

<»*>=    2<„J> (I.20b) 

-« k 

■*-» 

and  (1.19)  becomes 
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9   2   1 

3  I   3 
TO) 

1 + 
4<^> 

(1.21) 

A somewhat more useful form of (1.21) is achieved by expressing 

<^wr^> in terms of the characteristic rotational constant, 

B = 
ATTCI (1.22) 

From (1.22) and (I.20a), one has 

/2V.        2    ATTCB      SirklcB 
v   r-^      ß      -n U 

anc 

o 
(o2 l2^cl v2 (1.23) 

where to has been expressed in wave numbers 

v = U/2T\C 

Inserting (1.23) into (1.21), one has 

o 2    i 2 u      1 
fv          =    — ^—-   —— 
13 13 1   + 16B    f   kT   l] 

-2    l27mclj (1.24) 

■'^: 
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It is now of ir.terest to estimate the magnitude of the second term in 

the square bracket for the case of interest to us. Here the relevant 

numbers are v - 1000 cm" , kT^irtlc ^ 300 cm  and  B ^ 30 cm" .  Insert- 

ing them into (1.24) gives for the second term e magnitude % 0.15.  Let 

us now note that the whole effect of rotational motion is contained in 

this term.  The above numerology exhibits that this motion, although non- 

negligible is of secondary importance in determining the absorption at 

10 microns.  In particular it justifies the text procedure of replacing 

rotatory motion of the dipole by linear motion of a fictitious charged 

particle. 

A final point concerns the values of charge and mass to be used 

for this fictitious particle.  In the case of a diatomic rotator, one may 

express p and I in terms of internuclear separation, R, as 

p = eR 

I = M  . R' 
red 

(1.21) then becomes 

a1 -j M 
red TU) 

h [1 + "'] (1.25) 

The corresponding expression for the real part a of the complex 
R 

"conductance",  a - -iaia  (i.e., a.= u   .)  reads 
R "*"1 

(ü,) "i w— -h [1 + •••] (1.26) 
red    TU) 

which, apart from the correction term in the square bracket (discussed 

above) and the factor 2/3 (reflecting the fact that the number of degrees 
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of rotational motion is two, as compared with three for translation) is 

Just the well-known Drude formula for absorption associated with the 

(impact) collision-interrupted motion of a free particle of charge e 

and mass M^.  It is thus clear that whenever the ratio e /Mred occurs 

in text equations44, the appropriate replacement recipe is: 

M red 

2 

I 
(1.27) 

c 

u 50 



* 
APPENDIX II 

In this appendix, the Integral In the text Eq. (2.56) will be 

evaluated by the method of steepest descents. The Integral In question 

is of the form 

eO =   e-
bF<y> dy (II.1) 

where 

F(y)   = ay + l/[y1/2 +  (y+l)1/2] (II.2) 

(the dlmenslonless parameters, a and b, being defined by the text Eqs. 

(2.57b) and (2.57c), respectively). 

The first step is to locate the saddle-points, as defined by the 

equation 

F'ty) = 0 . (II.3) 

Differentiating (II.2), one has 

r.,.   .    v-w + (v+u-^ 
2^ + (y+l)

1'2]2 

which, after a few algebraic manipulations, takes the form 

F'ty) = a - 
2y1/2(y+l)

1/2 [y1/2 +  (y+l)172] ' 
(II.A) 
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o Introducing (II.4) into (II.3), one obtains the saddle-point equation 

L 

2y8
1/2 (ys+i)

1/2 yl'2 * (v»1/r 
(II.5) 

(the subscript, s, denoting the saddle point values  of y). 

The usual procedure is to solve for y in terms of the (physically 
s 

variable) parameter, a.  In view of the complicated algebraic form of 

(II.5), the (equally appropriate) procedure of regarding y to be the 
s 

basic parameter — given in terms of physical quantities via (II.5) and 

the text Eq. (2.57b) will be followed.46 

The next step is to develop a Taylor expansion of F(y) about y 
s 

(up to and including terms quadratic in y-y ).  For this, F'^y ) is re- 
s s 

quired.  Differentiating (II.4), and using (II.5) (together with algebraic 

manipulations of the type employed in establishing the final form of 

(II.5)), one obtains 

F"(y8) -f ys  V1 1/2, ^,.1/2 
ys (ys+l) 

(II.6) 

Using the standard steepest-descents approximation of replacing 

F(y) by its Taylor-ejxansion in the vicinity of the saddle point, and 

extending the lower limit of integration to minus infinity, one has 

+00 

^4 
:b[F(ys)+iF"(ys)(y-ys)

2 

dy 

[  27r 
LbF"(y8) 

1/2 
-bF(y ) 

(II.7) 
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where F"(y ) is given by (II.6), and where 

F(V = a ^s + -W-1, 
ys' + (ys+i) 

1/2 

■ - k ^ cv»1'2 
(II.8) 

(the second equality arising from use of (II.4)). 

o 
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collisions of H20 with nonpolar gases). 

5. I.E., subject only to the requirement that the angular velocity 

vectors before and after collision by perpendicular to the momentary 

dipole orientation vector. 
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calculations of this paper than the Boltzmann equation approach. 

8. As shown in detail in the appendix paragraph subsequent to Eq. (1.24), 

this is the case for our problem. 

9. Mathematically, the intensity is proportional to the absolute square 

of the Fourier transform of the electric current.  As is known, the 

magnitude of said transform is determined principally by time vari- 

ations on a scale of l/co (or less). 
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REFERENCES (continued) 

10. The last assumption is appropriate for our case, if the collisions of 

interest are between the absorbing molecule (H-O) and the principal 

atmospheric constituents (N« or 0 ). For H-O-^O collisions, the 

assumption is still qualitatively appropriate. 

11. In the case of H20, the most relevant interactions — i.e., those 

affecting the rotational motion are those between each H atom and the 

perturbing molecule. Ignoring H20-H20 collisions, - i.e., focusing 

on the collisions involving the principal atmospheric constituents — 

0o and N„, one may assume the interactions to be mainly of two types; 
11 4 

(a) an attractive polarization type interaction (^1/r ), arising from 

the partially ionic character of H^O (with each hydrogen atom having 

a net charge e ^e) and (b) a repulsive interaction which will be 

assumed to have the exponential form given by Eq. (1.4). Provisionally 

the polarization term will also be neglected; the general question of 

attractive forces will be considered later — especially in connection 

with H2O-H20 collisions. 

12. Eq. (1.107) of Ref. 2. 

13. it is expected that a recipe similar to that used in Ref. 2 will be 

found adequate for our purposes. 

14. Here, and in what follows, only $>    *  will be treated explicitly; the 

results for $   will be found to be almost automatically inferable 

from those for ^  . 

15. It may be remarked in passing that this last feature corresponds 

completely to the well known classical proportionality between the 

amplitudes for either absorption or stimulated emission processes and 

the acceleration of the charged particles involved.  In the case at 

hand, this acceleration is (in zero  order) ~" M  8x 
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16.  The ratio kf/V.i  arises from the circumstance that the outgoing and 

incident waves are characterized by different velocities, their ratio 

being kf/ki.  The factor 4 occurs simply by virtue of the asymptotic 

form of ^(x), as given by (2.10), the incident amplitude of which is 

1 -K^ x + 6^ 
2 e 

16a. It is here tacitly assumed that the potential, V(x), is sufficiently 

repulsive so that ij^, ijjf, and ib all drop exponentially with diminishing 

x, once inside their respective classical turning points. This property 

in question certainly holds for a potential of the form V(x)= e' -ax 

17. A standard reference is Morse and Feshback, "Methods of Theoretica] 

Physics" (McGraw-Hill, 1953), Vol. II, page 1687, et seq. The case 

at hand, namely the one-dimensional repulsive potential, is treated 

explicitly in Ref. 2 [pp 14-15 and Eq. (1.35)]. 

18. Tables of Integral Transforms, Bateman Manuscript Project (McGraw-Hill, 

1954), Vol. I. 

19. AE^ will ultimately be Interpreted as the absorbed energy per 

"effective" collision.  Its product with the "effective" collision 

rate, l/^eff, will represent the rate, W, of energy absorption from 

the field per absorbing molecule; dividing W by the magnitude of the 

Poynting flux vector of the electromagnetic field will then yield the 

ultimate goal of the calculation, namely the absorption cross-section 

of the polar molecule. 

20. Since our calculation may be regarded as a lowest-order Born approxi- 

mation (with the electromagnetic field providing the perturbation 

which causes transitions between exact eigen-states of the field-free 

system, microscopic reversibility (symmetry with respect to interchange 

of initial and final state indices, k and kf is an immediate conse- 

quence.  (Note, Incidentally, that (2.40) is manifestly symmetric with 

respect to such interchange.) 
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21. I(k )dk is seen in (2.43) to be equal (apart from the normalization 

factor) to the spectral component of the particle flux at k..  In this 

connection, it will be recalled that P, ,. (k+k,) is defii.ed in terms 

of the ratio of incoming to outgoing particle flux. 

22. Cf. Ryshik and Gradstein, Tables (Deutsche Verlag der Wissenshaften, 

1963), formulae 7.322 and 7.335. 

23. In Drude's theory, absorption (in the wing-region, UT >> 1) is pro- 

portional to the real part of the conductivity.  This quantity is given 

by the formula 

ö(ü)) =  T - 
Mu) 

(per charge carrier). Corresponding to this real part, there exists 

a nonvanishing energy transfer from the electromagnetic field to the 

charged particle, given by 

_ ,  .£2      2e2 1 £2 
2a(a.)£0=-27 fco . 

Dividing by the incident flux, CQ 72TT one then has for the absorption e incident tiux, cc 

cross section, 

2 
Q =  2~   , q.e.d. 

TTMCW T 

With regard to the factor 4/3, occurring in (2.52) it should be 

pointed out that the factor 1/T in Drude's expression actually denotes 

the momentum-transfer collision rate, and should thus be equated to 

the total collision rate times the factor<^l - cos I|J^> (where \p  is 

the scattering angle).  Now it is a relatively straight-forward exercise 

to show that, in specular reflection from a plane surface, an average 

over all possible angles of incidence, <^ cos i^^*" - 1/3; hence 

^ 1 - cos ^ ^ = 4/3. 
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24. The circumstance that (2.55) is an impact-type expression should not 

be surprising, since the physical significance of its condition for 

validity (namely —p—TTT" << 1) is simply that an appropriately 

defined "collision time" (in this case, the interaction range, 1/a, 

divided by some average velocity, (v.+v )/2) be small compared to the 

reciprocal of the external frequency, u.  This condition is one of the 

standard criteria for the applicability of impact-type theories (cf. 

T. Holstein, Phys. Rev. 79_, 744 (1950). 

25. For this table kT and M were set equal to 300oK and twice the 

hydrogen-atom mass, respectively. 

26. As remarked in the introduction, even this upper limit will be found 

to be substantially smaller than the experimental value for H„0 far- 
3 

wing absorption reported by Burch. 

27. This formula actually gives the r.m.s. relative velocity, but is 

sufficiently accurate for our purposes. 

28. Actually, the quoted paragraph gives this condition as (üJ-CJ ) T  < 1, 

where u is the unperturbed line frequency.  In our problem, as 

discussed lengthily in Appendix I, this frequency (i.e., any one of 

the dominant rotational frequencies) is set equal to zero. 

29. In the case at hand, one has to consider the perturbation of the 

rotational frequencies (or, more generally, the rotational motion, 

itself) arising during the transient existence of the H-O-^O collision- 

complex. 

30. In the actual physical problem, this would correspond to the distance 

of closest approach of the one of the hydrogen atoms to the nearest 

atom of the perturbing molecule (e.g., in H-O-H-O collisions the 

closest distance of approach of one hydrogen atom of the first H^O 
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molecule to the oxygen atom of its collision-partner).  Said distance, 

as well as the magnitude of V , may ultimately be estimated by various 

methods (e.g., structure and hydrogen-bond energies in ice and liquid 

water). 

31. This statement implies, of course, that one doesn't take V (x) to be 
a 

literally constant; otherwise it would cancel out of the problem.  One 

has always to understand the assumed constancy in the limiting sense 

in which V («) is still zero, a 

32. The characteristic w  dependence of (3.16) of classical impact theory 

manifestly obtains in the limit U u -^ 0. 

33. Strictly speaking, we should set V(r ) equal to the initial relative 

kinetic energy of the two molecules.  However, as will be seen 

Mt aposteriori; the individual magnitudes of the attractive and repulsive 

components of (3.20) are sufficiently large so that said relative 

kinetic energy represents but a small correction. 

34. Only the barest outlines can be given at this time, since no specific 

calculations have as yet been carried out.  It is hoped to have something 

more definite for the final report. 

35. in particular, there are actually two potential minima, each of which 

are characterised by the formation of the well-known hydrogen-level 

configuration: 0 — H 0. 

36. cf. G. C. Plmental and A. L. McClellan, The Hydrogen Bond. (Freeman 

and Co., 1960), p. 126. 

37. The justification for the use of this theory, as well as all other 

developments of the hindered-rotation approach, will have to be 

reserved for the final report. 
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REFERENCES (continued) 

It is herewith once and for all assujied that the (field-free) 

Hamiltonian of the system is such that there is no preferred spatial 

direccion.  Thus, any cartesian component may be used; in fact 

|<n|pzm>|  will eventually be replaced by -j |<n|u|m>|
2. 

Literally, s arises from the recipe that the field be slowly "turned 
s t 

on" (as e ); as is known, such a recipe leads to a correct description 

of dissipative effects.  In the standard Kramers-Heisenberg formula, 

the fact that the energy denominators E - E + fiu  are nonzero permits 
n   m - r 

one to go to the limit s = 0. 

(I.5a) is of course violated for the problem of interest to us, but 

should be adequate for the restricted goal of this appendix, namely, 

a study of the adequacy of replacing rotational motion by linear 

motion. 

( 

41. As has ^een pointed out sometime ago by E. P. Gross, J. Phys. Chem. 

23 p. 1413 (1955), this latest feature of "conservation of orientation' 

is contradicted by the "strong-collision" model of van Vleck and 

Weisskopf, Rev. Mod. Phys. 1948, 1946, which assumes complete 

disorientaticn per collision.  Incidentally, although the present 

treatment differs from the Boltzmann equation approach of Gross, it 

leads to equivalent results. 

42. In a stochastic theory, the symbol«^....^> acquires the meaning of 

a mixed stochastic-thermodynamic average, the stochastic aspect 

consisting of averaging over all stochastic possibilities with 

appropriate weights. 

43. Actually, in the case of water vapor, when rotational motion is that 

of an asymmetric top, three rotational constants (corresponding to the 

three moments of inertia) exist.  The value given here is that which 

appears co be the most relevant for rotation of the dipole-moment. 

L 
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44. 

45. 

46. 

REFERENCES (continued) 

In these equations, the subscript "red" is dropped for notational 

convenience. 

Inspection shows that the r.h.s. of (II.5) is monotonic; there is 

hence only one value for the saddle point, y . 
* - s 

The value ys for a particular value of the parameter, a, may ulti- 

mately be determined by any convenient numerical or graphical 

procedure. 

:: 
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Chapter 2, 

STIMULATED RAMAN EFFECT 

r 
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1.    INTRODUCTION 

In a previous report the general time dependence of Raman back- 

scattered waves was considered and applied to the specific problem of 

the self-quenching of a very Intense laser beam In the atmosphere.  In 

this report we shall first review some of the general results obtained 

previously. Next, we shall describe the action of a Raman amplifier. 

Finally, an attempt to quantitatively describe a recent experiment2 in 

Raman pulse generation will be presented. The research for this last 

description has not, as yet, been completed. 

Let us consider the interaction of a beam of laser light passing 

through a length of Raman active substance, with a beam of light at the 

first Stokes frequency of the laser light in that substance.  If the 

second beam is traveling in a direction which is opposite to the first 

it will be amplified by the stimulated emission of backscattered light. 

Assuming that all dissipatlve processes - including the stimulated 

emission of forward scattered Raman photons- are Inconsequential (I.e., 

they contribute a negligible amount to the depletion of the laser beam 

Intensity within the length of Raman active material considered) then 

the densities of the laser photons P^x.t) and amplified backscattered 

Raman photons pb(x,t) in the substance are related by the rate 

equations 

(£-£) 9x/p£ - P£(«Pb+ß) (1) 

3     3 1 
37" c 97lpt 

+ Pe(apb+6) (2) 

where 

a = cpTa(Ti) and ß 
2v Av 

cpTo(7r) ^ 
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The quantity O(IT) is the Raman backscattering cross section, p  is the number 

density of the medium, Av is the line width of the amplified wave and 

H    is the effective solid angle for Raman amplification — ß will be 
o o 
discussed in greater detail later in this report.  The change of variables 

x       . x 
S = t , T = t+ — , 

C * C ' 

R (S,T) = p (x,t) , R, (S.T) = p. (x,t) , 

enables us to write Eqs. (1) and (2) as 

3R, 
2— = -VaVß) (3) 

9R. 
2— = R

£^V6) (4) 

The general solution of these equations is given by 

R^S.T)  = IM. 
Gil)  -  | F(s) 

(5) 

R,(S,T)  = -£• + £ Gill 
G(T) - | F(8) 

(6) 

where F and G are arbitrary functions and F and G are the derivatives of 

these functions with respect to their arguments. 

Equations (5) and (6) have been obtained previously.  The appli- 

cation of boundary conditions to these equations in such a way as to 

describe first a Raman amplifier, and then a Raman pulse generator, is 

the subject of this report. 
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2.   THE RAMAN AMPLIFIER 

Consider a situation in which a Raman active material occupies 

the slab 0 < x < L.  Let laser light of constant intensity be incident 

on this slab from the left so that 

P,(0.t) = po (7) 

for all time. At t = 0 the slab is irradiated on the right by a beam 

of light at the first Stokes frequency of the laser lifjht in the sub- 

stance.  The photon density of the Stokes light is given by R(t): 

R(t)  = pb(L,t) ,  R(t)  = 0 for t < 0. (8) 

For the purposes of this section we shall assume that the spontaneous 

creation of backscattered photons in the amplifier is negligible, so that 

we may neglect ß in Eq. (6). Defining the quantity 

n(t) = | dt* RU') (9) 

we may employ Eqs. (5) and (6) to rewrite the boundary conditions (7) 

and (8) in the form: 

im 
G(t) ex 

" 2 
F(t) 

Po   • 

G(t + b 
G(t ♦*' 

a 
2 F(t  - 

*■> 

(10) 

• n(t) (11) 

Equation (11) may be written as 

G(t + j) - n(t) G(t + J)  - - f n(t) F(t - -) 
2 c (12) 

65 

- - 



' '"•WS? 

r 
Defining the quantity 

2 Ho P« • (13) 

solving Eq. (10) for G(t). and substituting the results in Eq. (12) we 

obtain the differential difference equation for F(t): 

F(t + *■) + [g - n(t)] F(t + h  - gn(t)F(t + h 

gn(t)F(t - ±) 

This  equation may be concisely solved in terms of the quantity 

(14) 

E(t)  - F(t) .gt 
(15) 

M 

Equations (5) and (6) imply that we may arbitrarily choose E(0) equal to 
unity.  Equation (14) may be rewritten in the form 

t-i 
r c 

L. ^ E(t) - 1 + e(t - A) a 
c dt'^Ct") e^" + ^tM> 

r 

t-g f dt'EU'-^e-8^ -^'l 
in C (16) 

where e(t) - 1 for t > 0 and e(t) - 0 for t < 0. Equation (16) relates 

the value of the function £(t) at a time t to its values at times less 
than t - 2 - .  since 

E(t) = 1 for t i - 
c (17) 

we may step-wise extend our knowledge of E(t)  in time intervals of 

g^ duration 2 - by  first inserting Eq.   (17)   into Eq.   (16)   to give 
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E(t) - 1 + e(t- -) e c 

c 

-I 
n(t- -) + dt" n(t") dtVf) e8(t"-t')+n(t,,)-ri(t,> 

for t < 3 - ,  (18) 

and then Inserting Eq. (18) into Eq. (16) to give E(t) for t < 5 -, etc. 

The laser and Raman photon densities at any point in the amplifi 

are related to E(t) in the following manner 
er 

R4(8.T)  -  Po 
^(s) 

E(s) + 
rT 
df e8^"6^ E(f; 

(19) 

^(S.T) 2-2^ E(T) 

rt 
E(8) +  dt' e«*»-*') E E(f) 

(20) 

The amplified signal is given by 

Pb(o,t) 
2 E(t) 
a E(t) ' (21) 

Equations (16) through (21) describe the behavior of the amplifier 

for an arbitrary pulse. As an illustrative example let us consider an 

input square pulse of infinite duration and photon density «y i.e., let 

Pb(L,t) - |-n(t) - fh9(t) - p1e(t). (22) 

where h - ap1/2 by definition. 
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w 
In  this case Eq.   (18)   gives 

E(t)     =    1 + 
h  e 

Hi 

(g+h)' 
h[e -l]  + (g+h)g(t- ~) (23) 

for L/c < t < 3 L/c, and Eq. (21) yields 

(g+h) 
Pb(0,t) = p, —j- 

E (g+h) (t- 7; g 
h[h[e(g+h)(t" c)_r|+ (g+h)(t-^)j+ (g+h) 2 e-2^ 

(24) 

in that same interval. Equation (24) exhibits the gain and "pulse-width 

sharpening" characteristic of laser amplifiers. Expanding the amplified 

signal about its time of arrival (L/c) we find that 

.(o.t +^77^ Pi Gi1 " (G-1)ht + "•} ' (25) 

O 
where 

G - 
^ a— p 

c o (26) 

is the amplifier gain. 

The step-wise integration of Eq. (14) indicated by Eq. (16) is 

useful for pulses which are no longer than several times 2 L/c (note, 

for L = 30 cm., 2 L/c = 2 nanoseconds). For very long pulses the large 

number of integrations required to describe the amplified pulse at late 

times would, of necessity, produce considerable difficulties. However, 

for the input square pulse of infinite duration described by Eq. (22) 

some simplifications can be made and an analytic expression for E(t) 

for all times may be obtained.  Substituting Eqs. (15) and (22) into 

Eq. (14) we obtain 

2g-     L 
E(t + -) - (g+h)E(t+7)  = -gh e c E(t- -) 

c *— 
(27) 

68 



■ 

with 

E(t) - 1 for t < ^ and E(^) = h e 
o L 

(28) 

Defining the Laplace transform of E(t+ -) by 

E(p) = dt e-P*1 E(t+ h (29) 

we readily obtain 

E(p)    =    -+ h e 
28^ 

P-fi 
P D(p%i (30) 

where 

f 

2 2^g-P) 
D(p)    =    P    -  (g+h)  p + gh e 

We may use the Bromwich integral 

(31) 

d+i« 

E(t+ h 1 
2T\i 

pt . 
dp e   E(p) , 

d-i» 

(32) 

where d is such that the contour lies to the right of all the poles of 

E(p), to express E(t + |) in terms of the finite sum 

2gt     N 
2T n 

E(t+h    ~    1+he    C   ^(-gh)n    eC      An(t-2^n)   , 

n-0 
(33) 

ct 
for N<7£-<N+1,  N - integer. 

where 

/n+1 
An(t) 

(n+l)!     . n+1 
dp 
 (P-fi) -Pt] 

..n+l    e 

(p-g-h) J 
p-o 

_L   ä  ( P-g        pt 1 
n: dpn Lpn+2 e  J 

P-g+h 
69 
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ft This result is completely equivalent to that obtained from Eq. (16). 

It is much simpler to obtain and express analytically, but still quite 

difficult to employ for N » 1.  in that case E(t) can be obtained from 

Eq. (32) by appropriately distorting the integration path. For 

2 L/c j* to - h" -g"
1 the result is 

E(t + -) - 
C' t -► o» 

■* h e 

o L P0-g Pot 

WV (35) 

where po is the pole of (p-g)/D(p) with the largest real part.  It can be 

shown that po is on the real axis and is a zero of D(p)(but not the zero p=g). 

The pole po is obtained graphically (see Figs. Ha and lib) by plotting 

the parabola (g+h)p-p  and the exponential gh exp[2L(g-p)/c] versus 

p for p real. These curves intersect twice: once at p=g and once at p=p . 
o 

Examining these curves we find that for 2L/c < t , 0 < p < g, and for 

2L/c > to, g < po< g + h.  Using Eq. (35) in Eqs. (19) and (20) we obtain 

C g-P0 
P  (X,t) >  p   — r-j 
*     t ^ «>  o      -2(g-p )x/c ' 

o 
g-P0 e 

(36) 

Oh^TTf   «Pc 
P0-g 

P0-g e 
2(g-Po)x/c * (37) 

from which - with the aid of D(p ) = 0 - it is easy to show that 

(L,t) ■ y p + p, - — p . 
-»- oo Ko  1  a  ^o (38) 

Pb(o,t)r ^ a Pf (39) 

o 
Equations (36) and (37) - describing p and p, in the interior of the 

amplifier after a very long time — are graphically displayed in Fig. III. 
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Equation (39) indicates that although the leading edge of the input pulse 

described by Eq. (22) may be amplified to a value greatly in excess of 

p + p, the tttil of the pulse is always given by 2p /a < p + p,. The 

sum of Eqs. (38) and (39) leads to the statement of conservation of 

energy: p^L.t) + pb(0,t) = po+ p^. 

o 
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_ 3.   THE RAMAN PULSE GENERATOR 

% *■ 

In this section we shall employ a model, based on Eqs. (5) and (6), 

and the theory of "self-trapping," ' to quantitatively describe the 

results of an experiment performed by Maier, et al.  In this experiment 

a carbon disulfide cell was illuminated by a beam of laser light. Ob- 

servations at the entrance of the cell revealed intense short pulses of 

backward scattered Stokes radiation. These pulses had a duration 

^ 3x10   sec and a peak power one order of magnitude higher than the 

incident laser power.  Since the gain in the CS. cell was quite large, 

it is not surprising that the emitted pulse was very intense. However, 

the mechanism for the production of the initiating pulse of backscattered 

Stokes radiation remains to be explained. The obvious candidate for such 

a mechanism is spontaneous emission. However, it has been previously 

demonstrated that if a backscattered Raman wave in a uniform laser beam 

was generated solely by the spontaneous emission in that beam, then the 

intensity of the Raman beam cannot exceed that of the input laser beam 

(a physical explanation of this phenomena will be given later). Maier, 

et al., suggest that "A probable mechanism for the initiation of the 

pulse is the abrupt onset of backward stimulated Stokes emission near 

the exit cell surface, accompanying the occurrence of laser self-focusing 

in that region." In support of this suggestion they report that in 

measurements of the dependence on cell length of the laser threshold 

power for pulse formation, they found a result which was characteristic 

of the self-focusing effect. As further support for this suggestion 

we shall construct a specific model of the Influence of self-focusing 

on the amplification of spontaneously emitted Raman waves. The validity 

of our model may be measured by the degree of success we attain in 

predicting the height and shape of the emitted pulse. 

Consider first a Raman active medium and a beam of laser light in- 

cident on it from the left. Let the photon density of the incident beam 

C 
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be the constant p and let the time of incidence be t = 0. The boundary 

conditions are 

p (0,t) = p e(t), p. (x,t) = 0 for t < 0. (40) 

Equation (4) indicates that R, is a continuous function of s and hence, 

since Pb = 0 for t < 0 we have 

^(O.T) = 0 . 

Using Eqs. (40) and (41) in (5) and (6) we have"1 

(41) 

Pb(x,t) = poe(s)i 
1 - e -(g+e/2)s 

(g+ß/2) e0x/c -g+g e-
(^/2)8 ' 

(42) 

Defining t to be the time required for the medium to generate a Raman 

wave at the entry plane which is half the intensity of the incident wave, 

i.e., 

Pb(0,to) 2 po ' (43) 

we obtain the relation 

9     aPo 
t (D ) = — Jln(~) 
ov o     ao ß o 

(44) 

:: 

to an excellent approximation.  From Eq. (44) it is clear that t de- 
o 

creases with increasing p ; ie., as the intensity of the incident wave 

is increased, the time required to generate a Raman wave equal to half 

the intensity of the incident wave is decreased. 

Consider now an arrangement in which a laser beam is incident from 

the left on a Raman active medium which occupies the space x > 0, and 

propagates through the medium for a distance L maintaining a constant 

cross sectional area (see Fig. IV). At x = L the beam cross section is 
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assumed to decrease radically due to self trapping.    Let the laser and 

Raman photon densities be denoted by p  .   and p1   for 0 < x < L,  and 

p - and p2 for x > L. For conservation of flux 

p^a.t)  = X Pu(L,t) (45) 

( 

by hypothesis. In Eq. (45), X >> 1 is the ratio of the beam area in 

region 1 to that in region 2.  Self focusing occurs because the laser 

beam is sufficiently intense to induce significant changes in the index 

of refraction. These changes are large enough to induce a lens-like 

condition in the region about x = L. The initial laser beam in region 1 

is consequently focused into a beam of a much smaller diameter in region 2. 

In region 2 the focusing effect of the increased index of refraction is 

exactly compensated for by the defocusing effect of diffraction and the 

beam propagates with a constant cross sectional area. Assuming that 

dispersion is sufficiently small, we may apply the principle of optical 

reversibility to those Raman photons which are spontaneously emitted 

within the cone angle for amplification in region 2. That is, upon in- 

cidence from the right on the region about x = L they will be defocused 

by the same factor as that for focusing the laser beam incident upon 

this region from the left. These considerations lead to the boundary 

condition 

p2a,t) = X p^L.t) (46) 

In a beam of uniform cross section the spontaneous emission is produced 

at a uniform rate along the beam. Consider two photons spontaneously 

emitted at x. and x» with x- < x«. As they travel to the left they will 

be amplified. When the intensity of the wave emitted at x^  is comparable 

to the initial laser intensity the wave emitted at x. also has an in- 

tensity comparable to the initial laser intensity. The laser intensity 

at location of the xv-wave is therefore depleted and the gain is 

decreased. Consequently, a saturation effect occurs and the x.-wave is 

prohibited from exceeding the initial laser wave in intensity.  Since 

(j 
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x and x were chosen arbitrarily the above argument holds throughout the 

beam and the backscattered spontaneous Raman beam cannot exceed the Initial 

laser beam in intensity.  This consequence of Eqs. (1) and (2) was previously 

demonstrated in a purely mathematical fashion.  In a beam of nonuniform 

cross section which, for example, corresponds to the self-trapping ar- 

rangement discussed above, the backscattered wave in the region x > L will 

grow to the laser intensity in that region before a large decrease of the 

laser intensity in the region 0 < x < L can occur. This fact is a clear 

consequence of Eq. (44) and the fact that the laser intensity is much 

greater in region 2 than region 1. The backscattered wave will propagate 

through the plane at x = L and will reappear to the left of this plane 

with an intensity comparable to the laser intensity there. Since the gain 

in region 1 is as yet uudiminished the backscattered wave will now be 

amplified to an intensity far in excess of the initial laser intensity. 

The physical argument given above is readily translated into a 

quantitative description of the Raman pulse. Eqs. (3) and (4) are valid 

in regions 1 and 2 separately if they are modified to include the fact 

that the constant "8" is different in the two regions. Consequently, 

R  and R may be expressed in terms of F , G1 and 3- through Eqs. (5) 

and (6). This is also true for R^, R2, F2, G2 and ^ The constants 

"0" differ by the factor Ü -  the effective solid angle for Raman ampli- 

fication. The effective solid angle "Q^1  is obtained in the usual 

manner for a baam of length L and a given cross section. Thf effective 

solid angle "ü"  corresponds to that of a cone with a half angle equal 

to the angle of total internal reflection in region 2.  Since there are 

four independent functions ^ 2 and G^^  2) four boundary conditions are 

required. Two boundary conditions are given by Eqs. (45) and (46). 

A third condition describes the source function. For simplicity we 

may take 

Pu(0,t) = po e(t) . (47) 

75 

MMMM 



■ 

The final condition is that there is no radiation at the frequency of 

the Raman waves incident on the system from the right; i.e.. 

R2(0,T) 0 . (48) 

o 

Using Eqs. (45) through (48) in the modified Eqs. (5) and (6) leads to an 

expression for p^O.t) in terms of a function which is the solution of a 

differential difference equation as in the preceding section.  Since the 

theory of self-focusing gives us a relationship between p and L, it is 

possible to determine the height and shape of the exciting pulse solely 

in terms of the incident laser intensity and X. 

The program outlined above for describing the backscattered pulse 

has not as yet been carried out because of some difficulties in solving 

the differential difference equation. As an aid in gaining insight into 

the nature of the solution to the above boundary value problem a simpler 

problem has been solved. This simpler problem is a mixed boundary- 

initial value problem. For this latter problem all space (i.e., 

- oo < x < oo) is fined with Raman active material. The self focusing 

occurs at x = 0 (in contrast to x = L in the preceding problem) so that 

p£2(0,t) = X  Pu(0,t) , p2(0,t) = X  p1(Ü,t) (49) 

Initially the Raman and laser waves are arranged so that 

Pu(x,0) = po , pJl2(x,0) = p1(x,0) = p2(x,0) = 0 (50) 

Equation  (48)  is valid in this problem.    An additional condition is 

R.. (8,0)  continuous in s (51) 

c 
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To solve the modified Eqs. (5) and (6) we first define the quantity 

»KO = 
G2(t)-2F2(t) 

G2(0) - f F2(0) 
(52) 

Adding Eqs. (49) we may obtain [G^t) - (a/2)F1(t)] In terms of i|/(t), 

Using these various relations In Eqs. (48), (50) and (51) we obtain 

the nonlinear differential equation for iKt): 

apo -at ,1-4A    ß2 p
ß2t/2 

^ + X — f' (53) 

where 

a = f(«P0+ 2ß1 - ß2/X) , 1^(0) = 1 

To compare the results of this problem to that of the more realistic 

problem considered earlier In this section we consider the plane x = -L 

where 

(54) 

ap^-L.T  + L/c)     =    -ß1+iir1+1/X 
r    B2T/2 -^ 
<32 e -(ßj-Xß^*) 

{*1/x- SK - *-rf (55) 

Gl-e 

(apo+ ß1)L/c 
and T = t - L/c > 0. Examinations of Eq. (53) both 

analytically and with the aid of a computer show that i>(t)  drcps very 

sharply - like exp(-Xgt) — from Its Initial value until It reaches a 

nlnlmum at t.. = 30 O-g)  .  It Increases gradually from that point onward. 

The backscattered photon density p, exhibits the expected pulse-like 

character. It rises to a maximum at a few times (Xg)  earlier than t^. 

The maximum ranged between 3p and 15Cp for the parameters considered, 

namely, 10 cm < L < 100 cm and 10 < X < 150. 

It Is our Intention to complete the analysis of the pure boundary- 

value problem during the remainder of this contract. 
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Pb(o,T) 

Jf 

Pb(L,T) = |^(T) 

G 

Figure 1.  A Raman amplifier of length L laser light - 

photon density p — is incident from the left 

at x = 0. The signal — light at the first Stokes 

frequency with a photon density pb(L,t) — is 

incident from the right at x - L. The amplified 

pulse — photon density p (0,t) — is emitted 

at x « 0. 
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r. 

2L(g-p)/c 

(g + h-p)p 

2L(g-p)/c 

d) (b) 

g + h 

Figures 2.  Determination of p from the intersection of 
2      0 

(g + h)p-p and gh exp[g - p)/c].  If 
-1 -1 

2L/c < t = h -g  then 0 < p  < g as 

shown in Fig. 2a, whereas if 2L/c < t 

then g<p     <g+has shown in  Fig.   2b, 
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Figure 3.  The photon density within the amplifi 

in the limit t -*■ » . 

er 

£ 
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ft» pn 
p. —- 

PI2 

•• X 

Figure 4. The Ramar pulse generator. A Raman active medium 

occupies the space x > 0. Laser light - photon 

density po - is incident on this medium from the 

right.  It propagates from x - 0 to x - L with a 

constant cross-sectional area. At x - L self 

focusing occurs and the area of the beam decreases 

by a factor of (1/A) « 1. me  laser and Raman 

photon densities are pu and p1 respectively for 

0 < x < L, and p^ and p2 for x > L. 
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